Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Climate and atmospheric deposition interact with watershed properties to drive dissolved organic carbon (DOC) concentrations in lakes. Because drivers of DOC concentration are inter-related and interact, it is challenging to assign a single dominant driver to changes in lake DOC concentration across spatiotemporal scales. Leveraging forty years of data across sixteen lakes, we used structural equation modeling to show that the impact of climate, as moderated by watershed characteristics, has become more dominant in recent decades, superseding the influence of sulfate deposition that was observed in the 1980s. An increased percentage of winter precipitation falling as rain was associated with elevated spring DOC concentrations, suggesting a mechanistic coupling between climate and DOC increases that will persist in coming decades as northern latitudes continue to warm. Drainage lakes situated in watersheds with fine-textured, deep soils and larger watershed areas exhibit greater variability in lake DOC concentrations compared to both seepage and drainage lakes with coarser, shallower soils, and smaller watershed areas. Capturing the spatial variability in interactions between climatic impacts and localized watershed characteristics is crucial for forecasting lentic carbon and nutrient dynamics, with implications for lake ecology and drinking water quality.more » « lessFree, publicly-accessible full text available February 1, 2026
-
Climate change is reducing snowpack across temperate regions with negative consequences for human and natural systems. Because forest canopies create microclimates that preserve snowpack, managing forests to support snow refugia—defined here as areas that remain relatively buffered from contemporary climate change over time that sustain snow quality, quantity, and/or timing appropriate to the landscape—could reduce climate change impacts on snow cover, sustaining the benefits of snow. We review the current understanding of how forest canopies affect snow, finding that while closed‐conifer forests and snow interactions have been extensively studied in western North America, there are knowledge gaps for deciduous and mixed forests with dormant season leaf loss. We propose that there is an optimal, intermediate zone along a gradient of dormant season canopy cover (DSCC; the proportion of the ground area covered by the canopy during the dormant season), where peak snowpack depth and the potential for snow refugia will be greatest because the canopy‐mediated effects of snowpack sheltering (which can preserve snowpack) outweigh those of snowfall interception (which can limit snowpack). As an initial test of our hypothesis, we leveraged snowpack measurements in the northeastern United States spanning the DSCC gradient (low, <25% DSCC; medium, 25%–50% DSCC; and high, >50% DSCC), including from 2 sites in Old Town, Maine; 12 sites in Acadia National Park, Maine; and 30 sites in the northern White Mountains of New Hampshire. Medium DSCC forests (typically mature mixed coniferous–deciduous forests) exhibited the deepest peak snowpacks, likely due to reduced snowfall interception compared to high DSCC forests and reduced snowpack loss compared to low DSCC forests. Many snow accumulation or snowpack studies focus on the contrast between coniferous and open sites, but our results indicate a need for enhanced focus on mixed canopy sites that could serve as snow refugia. Measurements of snowpack depth and timing across a wider range of forest canopies would advance understanding of canopy–snow interactions, expand the monitoring of changing winters, and support management of forests and snow‐dependent species in the face of climate change.more » « lessFree, publicly-accessible full text available July 1, 2026
An official website of the United States government
